

Integrated Modelling, Forecasting and Control for the Future Low-Carbon Society

Henrik Madsen, Rune Grønborg Junker, Christian A. Thilker, John Bagterp Jørgensen DTU Compute

http://www.henrikmadsen.org

CITIES, DiCyPs, FED - Green Digitalization 2020

DTU

The Challenge: Denmark Fossil Free 2050 ELECTRICITY **ELECTRICITY USE** WATER **BIOFUEL HEATING** FOOD HEAT **COOLING Renewables Energy user FLEXIBILITY** real-time matching of energy demand & production through DIGITALIZATION of Integrated **Energy Systems**

Space of Solutions

Flexibility / Virtual Storage

(enabled by Digitalisation and Energy Systems Integration)

CITIES, DiCyPs, FED – Green Digitalization 2020

Batteries

DTU

Data-Intelligent and Flexible Energy Systems

Energy System Models for Real Time Applications and Data Assimilation

Grey-box models are simplified models for the individual components facilitating system integration and use of sensor data

Centre for IT Intelligent Energy Systems

Smart-Energy OS

FLEXIBLE

ENERGY

DENMARK

Proposed methodology Control-based methodology

A FED example: Flexible Users and Penalty Signals

Case study No. 1

Control of heat pumps for swimming pools (CO2 minimization)

DTU

The considered house

- T_{sh} summerhouse temperature
- T_a temperature of air in the pool area
- *T_{in}* water temperature into the swimming pool
- *T_{out}* water temperature out of the swimming pool (controlled)
- T_o outdoor temperature
- T_g ground temperature
- Q_s solar heat gain
- w wind speed

Grey-box model (lumped parameter model)

- Based on equivalent thermal parameters model
- Dynamics: $\frac{dT_{in}}{dt} = \frac{1}{C_{in}} [H_w(T_{out} - T_{in}) + Q_{in}]$ $\frac{dT_{out}}{dt} = \frac{1}{C_{out}} [H_w(T_{in} - T_{out}) + H_g(T_g - T_{out}) + H_a(T_a - T_{out})]$ $\frac{dT_a}{dt} = \frac{1}{C_a} [H_o(w)(T_o - T_a) + H_a(T_{out} - T_a) + H_{sh}(T_{sh} - T_a) + Q_s + Q_a]$

Share of electricity originating from renewables in Denmark Late Nov 2016 - Start Dec 2016

Source: pro.electicitymap

Example: CO2-based control (savings 15 pct)

Flexibility (or Virtual Storage) Solutions

Flexibility (or virtual storage) characteristics:

- Wastewater systems can provide storage 0.2-6 hours ahead
- Supermarket refrigeration can provide storage 0.5-2 hours ahead
- Buildings thermal capacity can provide storage up to, say, 2-10 hours ahead
- Buildings with local water storage can provide storage up to, say, 2-18 hours ahead
- District heating/cooling systems can provide storage up to 1-4 days ahead
- DH systems can provide seasonal storage solutions
- Gas systems can provide seasonal/long term storage solutions

CITES Centre for IT Intelligent Energy Systems

Case study No. 2

Control of smart buildings using integrated weather forecasting

A Smart House

The smart house components:

The smart building and its components are also modelled using grey-box modelling. The optimal model for the building turns out to be a linear grey-box model.

Model for weather forecasting

$$\begin{array}{l} \text{Disturbance} \\ \text{model} \\ \text{equation} \\ \begin{array}{l} \text{d} Z_{\kappa} = f_{\psi}(Z_{\kappa}) \text{d} t + \sigma_{\psi} \text{d} \omega_{\kappa} \\ \kappa = \psi^{-1}(Z_{\kappa}) \\ \phi = I_{N}(\kappa, t) + I_{D}(\kappa, t) \\ R_{n} = R_{n}(\kappa, \phi, t) \\ \text{d} T_{s} = f_{T_{s}}(T_{l}, T_{s}) \text{d} t + \sigma_{s} \text{d} \omega_{s} \\ \text{d} T_{l} = f_{T_{l}}(T_{l}, T_{s}, R_{n}) \text{d} t + \sigma_{l} \text{d} \omega_{a} \\ \text{d} = [T_{a}, \phi]^{T} \\ \end{array} \\ \begin{array}{l} \text{Observation} \\ \text{equation} \\ \begin{array}{l} d_{\phi} = \phi + v_{\phi}, \quad v_{\phi} \sim N_{iid}(0, R_{\phi}) \\ d_{T_{a}} = T_{l} + v_{T_{a}}, \quad v_{T_{a}} \sim N_{iid}(0, R_{T_{a}}) \\ y_{d} = \left[d_{T_{a}}, d_{\phi} \right]^{T}, \end{array} \end{array}$$

Grey-box model for air temperature

One of the elements is a model for the ambient air temperature which uses net radiation as input:

$$\begin{split} C_s \mathrm{d}T_s(t) &= \left(\frac{1}{R_{sl}}(T_l(t) - T_s(t))\right) \mathrm{d}t + \sigma_s \mathrm{d}\omega_s(t) \,, \\ C_l \mathrm{d}T_l(t) &= \left(\frac{1}{R_{sl}}(T_s(t) - T_l(t)) \right. \\ &+ \frac{1}{R_{l\infty}}(T_\infty - T_l(t)) + R_n(t) \right) \mathrm{d}t + \sigma_l \mathrm{d}\omega_l(t) \,, \\ &d_{T_a}(t_k) &= T_l(t_k) + v_{T_a}(t_k) \,, \end{split}$$

Combined Forecasting and Control

15 days out of 7 months simulation

Strategy 3: Heat Pump & Electrical Heaters

Strategy 4: Heat Pump & Electrical Heaters & Coolers

Electricity cost (EUR)

Electricity cost of the simulations							
Heating strategy	Persistent	Advanced forecasts	Perfect				
Electrical heaters, u_1	303.2	302.2	302.0				
Heat pump, u_2	117.3	110.4	107.7				
Heat pump plus electrical heaters, $oldsymbol{u}_3$	113.0	108.2	107.5				
Heat pump plus electrical heaters and coolers, $oldsymbol{u}_4$	117.9	108.3	107.5				

Constraint violations

Constraint violation of the control simulations							
Heating strategy	Persistent	Advanced forecasts	Perfect				
Electrical heaters, u_1	48.5	39.6	25.1				
Heat pump, u_2	157.9	12.3	1.7				
Heat pump plus electrical heaters, $oldsymbol{u}_3$	48.0	6.7	1.2				
Heat pump plus electrical heaters and coolers, $oldsymbol{u}_4$	4.4	2.4	0				

Center Denmark

Digitalization Hub for Integrated Smart Solutions

Center Danmark – Digitaliserings Hub

Circularity in the development of digital energy systems

Center Denmark

DTU

FLEXIBLE

ENERGY DENMARK

Become a partner - see www.centerdenmark.com

It will increase possibilities for eg. EU projects and support – also since Center Denmark is approved by the Commission

Center Denmark is an independent and non-profit national research center with the aim to unify and embed research results within the field of digitalization of energy systems and put

Summary

- Methods for integrated modelling, forecasting and control are presented
- Using the Smart-Energy OS we have seen large potentials for Demand Response and Virtual Storage on all relevant time scales
- Automatic solutions are important
- Solutions are implemented at Center Denmark
- Solutions are tested and further developed using Uni-Lab.dk
- Digitalization and sector coupling is essential
- The controllers can provide
 - Energy Efficiency
 - Cost Minimization
 - Emission Efficiency
 - Peak Shaving
 - Smart Grid Services (like ancillary services needs, ...)

Control problem

In control the input, $oldsymbol{u}_k$, is piece-wise constant. Hence the cost cost function can be written as

$$\bar{\varphi} = \sum_{i \in \mathcal{N}} \boldsymbol{c}_{k+i}^T \boldsymbol{u}_{k+i} + \sum_{i \in \mathcal{N}} \boldsymbol{\rho}_{k+i+1}^T \boldsymbol{s}_{k+i+1} , \qquad (7)$$

Given the linear model for the smart building the optimal control problem is

$$J(\hat{\boldsymbol{x}}_{k|k}, \{\hat{\boldsymbol{d}}_{k+i|k}\}_{i \in \mathcal{N}}) = \min_{\boldsymbol{u}, \boldsymbol{s}} \quad \bar{\varphi}, \qquad (8a)$$

s.t.
$$\boldsymbol{x}(t_k) = \hat{\boldsymbol{x}}_{k|k}$$
, (8b)

$$\boldsymbol{x}(t_{k+i+1}) = A\boldsymbol{x}(t_{k+i}) + B\boldsymbol{u}_{k+i} + E\boldsymbol{\hat{d}}_{k+i|k}, \qquad (8c)$$

$$\boldsymbol{x}(t_{k+i+1}) \in \mathcal{X}_{k+i+1},$$
 (8d)

$$oldsymbol{u}_{k+i} \in \mathcal{U}_{k+i}\,,$$
 (8e)

$$s_{k+i+1} \ge \mathbf{0}\,,\tag{8f}$$

$$i \in \mathcal{N}$$
, (8g)

Grey-box Modelling

