Impact of Energy Communities on Distribution Grids

CITIES demonstration project

Tilman Weckesser
Dominik Franjo Dominkovic
Emma Margareta Viktoria Blomgren
Amos Schledorn

DTU Compute
Department of Applied Mathematics and Computer Science
Why energy communities?

- Ambitious CO$_2$ reduction plans in the EU and Denmark
- Raised awareness about climate change
- Growing interest for creating local energy system solutions and Energy Communities (ECs)
- Often the aim is to optimize consumption of locally and sustainably generated electricity
- For that purpose, a local energy storage unit, such as a communal battery, maybe integrated

How will an energy community with PVs and a communal battery affect the distribution grid?
How to assess the impact of ECs?

- How is voltage and component loading impacted by integration of a communal battery?
- Three different distribution grid types
- Different energy community configuration
- Three different battery operation strategies

<table>
<thead>
<tr>
<th>Battery operation strategy</th>
<th>City</th>
<th>Suburban</th>
<th>Village</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 - Max. self-sufficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2 – Peak shaving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3 – Economic optimization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distribution grids

- **Medium voltage**: Cigre MV grid

- **Low voltage grids**:
 - Representative LV grids for Germany
 - **City**: short feeders; loads are a dominantly multistory apartment buildings with a few detached houses
 - **Village**: short feeders; loads are detached houses
 - **Suburban**: longer feeders; loads are detached houses
Investigated energy community configurations

- **EC1: One LV feeder**
 - All member located on one feeder

- **EC2: One MV/LV transformer**
 - Members on two or more feeders
 - EC2a: only households
 - EC2b: households and one commercial customer

- **EC3: Multiple MV/LV transformers**
 - Members across multiple MV/LV transformers
 - EC3a: only households
 - EC3b: households and one commercial customer
Battery operation strategies
Dimensioning of the PV & battery system + operation profile

General criterion: costs

Investment costs
PV & battery

Operational costs
Power consumption
Power sales
Grid tariffs, fees, taxes

Dimensioning strategies: additional constraints

S1 – Self-sufficiency: constraint power sales
Power generated from PV fully consumed in community (no power sold)

S2 – Peak shaving: constraint peak consumption
Not more than 95%, 90%, … , 5% of peak consumption allowed

S3 – Economic benefit: no additional constraints
PV and battery sized to minimize costs and maximize profits for the community
Approach for grid impact assessment

- Time-series power flow simulation
 - Household consumption profiles
 - Based on measurement data of 30,000 customers for a year
 - Representative profiles extracted for different consumer categories
 - Optimal battery operation profiles
 - Based on operation strategies S1 - S3
 - Simulation period: 2 summer weeks and 2 winter weeks

- Assessment of:
 - Minimum and maximum voltage
 - Maximum loading of cables and transformers

Three questions are investigated:

1. Does the location of the battery have an impact on the distribution grid?

2. How much can ECs contribute to peak-shaving?
 - What is economically and technically feasible?

3. How do the three battery operation strategies impact the distribution grid?
Insight #1: Battery location plays a significant role with respect to grid impact

Example: S1 – Self-sufficiency – Impact on maximum and minimum bus voltage
Insight #2: City grid likely to be impacted most

Example: S1 – Self-sufficiency – Maximum LV line loading
Insight #3: Impact greatly depends on battery operation strategy

Example: S2 – Peak-shaving
Preliminary conclusions

- Development of a **setup to investigate the impact of Energy Communities** considering
 - Different battery operation strategies
 - Various energy community configurations
 - Different types of distribution grids

- **Insights on grid impact**
 - **Insight #1 - Location of the battery:** coordination between grid operator and energy community is essential
 - **Insight #2 – Different grid types:** City grid likely impacted most
 - **Insight #3 – Battery operation strategy:** Impact on the grid greatly depends on the operation strategy