Distribution Network Characterisation: Visibility and Operation

Andrew Keane
University College Dublin
Energy Systems Integration Partnership

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

Generation

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

generation

DSO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

energy

for

economy

DDO

TSO

Electricity

Customer Supply

End Use

Finance

Gas

Water

Generation

Customer Supply

End Use

Finance

Gas

Water
Areas of Research through ESIPP

➢ Power System
➢ Gas Networks
➢ Climate and Weather
➢ Residential and Commercial Buildings
➢ Manufacturing
➢ Wastewater Treatment
➢ Data Centres
➢ Market structures – incentives and risks
➢ Consumer Behaviour

Integration and Optimisation!
How do DERs affect the distribution grid?

Secure integration

Need for models that represent the grid state
Context

- Increasing penetration of distributed energy resources (DER) are transforming distribution system
 - Embedded generation
 - New electric loads (electric heating, EVs, etc.)
 - Demand response mechanisms

- Technical problems
 - Violation of voltage statutory limits
 - Overloading of network assets

- Need for cost-effective solutions
 - Limited monitoring and communication
 - Result in efficient network regulation
 - Implementable in near-term
 - Compatible with real-time operation
 - Consideration of network security and status

Diagram:
- Passive network operation
- Active network management
- Centralized solutions
- Decentralized solutions
Curve fitting in distribution systems

Polynomic characterization of the system variables
Test case and results: estimating remote variables based on local voltage measurement

Voltage estimations
Estimations
Coordinating demand response services with network operational constraints

\[
\text{estimate value} = \text{forecast} + \text{effects from DER}
\]

Characterising network sensitivities with polynomial fitting

\[\gamma_{i,t} = \gamma^*_\text{forecast}_{i,t} + \sum_{h}^{H} c_t \gamma_{i,P_h} P_{h,t} \]

DR allocation

Network sensitivities

Estimated value of network variable over future time horizon

\[\gamma_{i,\min} \leq \gamma_{i,t} \leq \gamma_{i,\max} \]
Day ahead scheduling and real-time operation problem

\[
\min \sum_{t_{\text{schedule}}}^{T} \left(\sigma_{P_t} P_{total_t} + \sigma_{Q_t} Q_{total_t} \right)
\]

subject to:

\[Y_{\text{min}_i} \leq Y_{i,t} \leq Y_{\text{max}_i} \text{ with } i = 1, ..., k\]

\[g_j(x) = y_j \text{ with } j = 1, ..., q\]

\[f_u(x) \geq d_u \text{ with } u = 1, ..., w\]

where

\[P_{total_t} = \sum_{h}^{H} P_{h,t}, \quad Q_{total_t} = \sum_{h}^{H} Q_{h,t}\]

Integrated DR Headroom into Aggregator Operations
Results

Maintain currents within the cable capacity

Electricity $
Enabling the application of DERMS

- Topology identification
 - Cyber-security
 - Loss of communication
- Operating status of network
 - Over-voltages, over-loads, ...
- DERMS
 - Coordinated management of DERs
Resilient topology identification

- Discriminant Analysis for topology identification
 - Each topology is modelled as a multivariate Gaussian distribution
 - Using maximum likelihood approach

- Bayes’ likelihood ratio
 - To detect anomalous measurements

- Quadratic optimization data recovery approach
 - To recover the lost measurements
Closing Thoughts

• Many exciting new techniques emerging for network management and demand side services

• Consideration of network security and integrity is required
 • What is the real time topology?
 • Is data correct?
 • What if communications fail?

• These can be solved but do require attention
Closing Thoughts

• High potential in characterisation of feeders
 • Polynomials can provide direct solution
 • Near instantaneous computation time
 • No iterations
 • Utilise local measurements, minimise communications

• Can drive local network management but also support new actors to participate in market/supply system services
 • Can support decentralised, centralised, cloud based approaches
Open-DSOPF: a platform for DER optimization in distribution grids

[*] V. Rigoni and A. Keane, "Open-DSOPF: an open-source optimal power flow formulation integrated with OpenDSS", IEEE PES General Meeting, 2020

https://github.com/ValentinRigoni/Open-DSOPF